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ABSTRACT: The constant demand for novel functional materials calls for efficient
strategies to accelerate the materials discovery, and crystal structure prediction is one of
the most fundamental tasks along that direction. In addressing this challenge,
generative models can offer new opportunities since they allow for the continuous
navigation of chemical space via latent spaces. In this work, we employ a crystal
representation that is inversion-free based on unit cell and fractional atomic coordinates
and build a generative adversarial network for crystal structures. The proposed model is
applied to generate the Mg−Mn−O ternary materials with the theoretical evaluation of
their photoanode properties for high-throughput virtual screening (HTVS). The proposed generative HTVS framework predicts 23
new crystal structures with reasonable calculated stability and band gap. These findings suggest that the generative model can be an
effective way to explore hidden portions of the chemical space, an area that is usually unreachable when conventional substitution-
based discovery is employed.

■ INTRODUCTION

Addressing the worldwide increasing energy demand requires
the discovery of novel functional materials by exploring the
vast chemical space. An important subspace of chemical space
is the space of crystalline materials. The essence of the
successful discovery of crystal materials with desired properties
depends on the exploration efficiency of chemical space. Two
general strategies for this goal are either to use chemical
intuition and empirical rules to improve the performance of
existing materials or to search general-purpose databases of
known materials, such as the experimental inorganic crystal
structural database (ICSD).1 The latter method, known as
high-throughput virtual screening (HTVS),2,3 has been
demonstrated to be quite successful for various applications.
Some of them include the discovery of promising photocatalyst
materials,4,5 electrode materials for Li-ion batteries,6−8 2D
materials,9−11 and porous materials for propylene/propane
separation.12 In these examples cited, promising materials have
been identified and experimentally verified using computa-
tional screening of the experimental database.
Since the currently available experimental crystal databases

such as the ICSD1 (∼200 000 structural data) and the
Landolt−Bornstein database13 (6836 structural and diverse
properties data) are orders of magnitude smaller than the
possible chemical space of inorganic crystals, as a way to
further expand the search space, the elemental substitution
strategy to these known crystals is employed in many HTVS
studies. Here, one performs a combinatorial elemental
substitution on the existing crystal structural motifs followed
by DFT calculations to generate new large computational
crystal databases. Some examples of these large-scale computa-
tional databases are Materials Project,14 Open Quantum
Materials Database (OQMD),15 and AFLOW-lib.16 These

large computational databases have been successful in
generating many new discoveries in areas such as light-
harvesting materials,17 cathode coatings of Li-ion batteries
using OQMD,18 and novel antiferromagnetic Heusler com-
pounds using AFLOW-lib.19 Despite these promising results,
one fundamental limitation of the substitution-based HTVS
approach is that it cannot go beyond the template of existing
crystal structures in the database.
Some of the promising methods to explore beyond the

known crystal structure motifs include crystal structure
prediction (CSP) methods using global optimization,20 and
generative models in machine learning. Among various global
optimization methods (e.g., basin hopping,21 simulated
annealing,22−24 metadynamics,25 minima hopping,26 quasiran-
dom structure search,27,28 and evolutionary algorithm29,30),
evolutionary algorithms are widely used in predicting crystal
structures since these algorithms are population-based, can find
various global and local optima with various initial guesses, and
often show more robust searching without being trapped in
local minima. Different evolutionary strategies29,30 exist but
generally involve two key steps: first, the initialization of
structural pool (i.e., population) for the given specific chemical
composition and, second, update of the population after
evaluating the target property (e.g., formation enthalpy) of
each crystal structure using DFT calculations. Several
promising results using evolutionary algorithms include the
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crystal structure predictions for thermodynamically stable
tungsten borides,31 Lennard-Jones cluster,32 superhard materi-
als,33 superconductors,34 and various 2D layered materials.35

The quasirandom structure sampling method such as ab initio
random structure searching (AIRSS)27,28 is also noteworthy
due to its simplicity in quasirandom structure generation with
certain rules (e.g., symmetry, volume, and coordination) and
their effectiveness to find a global minimum with highly
parallel implementation.
Generative models, on the other hand, focus on building a

continuous materials vector space (or latent space) to encode
the information embedded in the materials data set and use the
previously constructed latent space to generate a new data
point (i.e., a material). In addition, by building a mapping
between the latent space and the property space, an inverse
mapping of new materials with a target property can be
possible. This approach is a potential solution to the long-
sought goal of the community of inverse design.36,37 Even
without this the latent-space-property mapping, the new set of
materials generated via generative models can be employed as
feeder structures for a more unbiased or unstructured sampling
of chemical space by means of HTVS. Since the generated
materials can have completely different structures and
compositions from the known materials, this generative-
HTVS approach can also lead to novel discoveries that are
not possible using conventional HTVS limited by the existing
crystal databases. This latter approach, a crystal generative
model followed by HTVS, is the subject of this work.
Two of the most popular generative models in chemistry are

the variational autoencoder (VAE)38 and generative adversarial
networks (GAN).39−43 VAE typically consists of two deep
neural networks (i.e., encoder and decoder) and explicitly
constructs the latent space using known prior distributions
such as a Gaussian distribution. The encoder network encodes
the chemical space into a low-dimensional latent space, and the
decoder network performs the inverse mapping that generates
material structures from it. On the other hand, a GAN uses a
decoder (or generator) and discriminator to learn the materials
data distribution implicitly. We will further describe the
framework in the Composition-Conditioned Crystal GAN
section. In both VAE and GAN approaches, a key component
of crystal structural generative models is the invertibility from

material representation (features) to real structure of material
since the features generated from the latent vector should
eventually be inverted back to the real structure of material in
order to confirm the generated material.44

Although many representations, such as those based on
fragment descriptors or graph-based encoding for crystal
structures,45,46 were proposed with great promise for
predicting key properties of materials (e.g., formation energy,
energy above the convex hull, band gap, bulk moduli, etc.),
most of these descriptors and representations are not invertible
(or have not been demonstrated to be invertible) to the real
3D structure. Thus, constructing an invertible representation is
still an important task for developing a crystal structure
generative model. One of the first suggested representations to
encode crystal structures was a 3D-image representation37

which led to the first generative model (iMatGen) for
inorganic solids, which employed a VAE architecture. A similar
approach was also proposed by Hoffmann et al.47 by using 3D
atomic density representations and VAE, in which an
additional U-net network was employed to classify element
information from the generated 3D atomic density. Kim et al.48

proposed a WGAN-based generative model to discover new
zeolite materials with desired energy and heat of adsorption.
While these 3D voxel image representations opened the door
to the generative modeling of the inorganic crystals, there is
room for improvements for practical applications. Some of the
challenges to overcome using this approach include the
following: (1) Inverting representations to materials structures
requires user-defined postprocessing. (2) the unit cell size of
the crystal material is limited by the cubically scaling three-
dimensional grids. (3) representations are memory-intensive,
leading to long training time. Finally, (4) images are inherently
not translational-, rotational-, and supercell-invariant.
In this work, we use a crystal representation that is inversion-

free with a low memory requirement (by a factor of 400
compared to the 3D voxel representation used in iMatGen,37

for example). We represent the crystal structure as a set of
atomic coordinates and cell parameters, inspired by “point
cloud”49−53 used for image classification and segmentation in
machine-learning fields, where objects are considered as a set
of points and vectors with 3D-coordinates. As an application,
we construct a GAN to generate new crystal structures with a

Figure 1. Point cloud representation of crystal structure. The representation is composed of unit cell parameters and the sets of rescaled fractional
coordinates of atoms.
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desired chemical composition and apply it to the Mg−Mn−O
ternary system. The Pourbaix stability and band gaps of these
materials are then evaluated to find a promising photoanode
material for water splitting in the HTVS manner.4 The
employed generative-HTVS predicts 23 novel Mg−Mn−O
structures as a potential photoanode which could not have
been found using the conventional substitution-based database
enumeration approach.

■ REPRESENTATION

To encode the crystal structure, we employ a 2D matrix
representation inspired by a “point cloud”50 which includes
both unit cell and fractional coordinates of each atom in the
unit cell where the permutational invariance is imposed by
symmetry operation used in network encoding the proposed
2D representation (see the Composition-Conditioned Crystal
GAN section for model detail). Since the representation is the
material structure itself, there is no need for the inversion from
the representation to the material. One limitation is the lack of
translational, rotational, and supercell invariances (i.e.,
invariance under the repeating of the unit cells with respect
to the lattice vectors) of the representation, and we address
them by data augmentation as outlined later. The representa-
tion is summarized graphically in Figure 1. Since our
representation only requires the atomic coordinates and cell
information, it requires almost no preparation and memory
cost to store the raw input data, in contrast to the 3D voxel
representations which require substantial memory space to
store the grid data.
We note that a similar representation was recently used to

generate new ternary hydride structures by learning their
binary counterparts with a cross-domain learning strategy.54

Interestingly, the method generated the structures of a more
complex domain with reasonable interatomic distances by
imposing constraints in the training process. However, it differs
from our work in that it is a cross domain model: generating
structures of a more complex domain (ternary) from the
structures of a less complex domain (binary). More
representations for solid-state materials are surveyed else-
where.55

■ TRAINING DATA SET AND DATA PREPROCESSING

As mentioned previously, for an application of the proposed
GAN model for crystal structure generation, we considered the
ternary Mg−Mn−O system to generate new crystal structures
of various compositions. The training set for the Mg−Mn−O
system was constructed using the elemental substitution of the
ternary compounds in the Materials Project (MP) database.56

After removing duplicates, we retain a total of 1240 unique
structures with 112 compositions in the initial training set. We
note that this data set has the data imbalance in the
composition and affine invariance issues such as supercell,
translation, and rotation. To address them, we used data
augmentation, which is a commonly used technique in the
machine-learning field to alleviate such a data imbalance and
invariance problem.57−61 Specifically, we added the supercell
structures as well as the structures in which translational and
rotational (i.e., swapping the axes of the unit cell) operations
are applied until these augmentations yield 1000 structures for
each composition. Since the original training data set includes
112 Mg−Mn−O compositions, a total of 112 000 Mg−Mn−O
structures were used for the training of the current generative
model. In addition, for the robust training of the classifier,
when the training data was put in the models, atomic
permutation operations were randomly applied to training
data. Information for the V−O data set is described in Section
S6 in the Supporting Information, SI. The learning curve of the
composition-conditioned crystal GAN and the effects of data
augmentation for addressing symmetry invariance are
described in Sections S3 and S7 in the SI, respectively.
Compared to a model without data augmentation, the analyses
in Figure S11 show that data augmentation clearly improves
the model’s ability to recognize the same materials represented
in different input features (translated, rotated, or supercell
repeated) as identical.

■ COMPOSITION-CONDITIONED CRYSTAL GAN

Our GAN model consists of three network components: a
generator, a critic, and a classifier as shown in Figure 2. The
generator takes the random Gaussian noise vector (Z) and
one-hot encoded composition vector (Cgen) as the input to
generate new 2D-representations. The one-hot encoded
composition vector is used as a condition to generate materials

Figure 2. Composition-Conditioned Crystal GAN proposed in this work for inorganic crystal design. Z, Cgen, and Creal denote a random input
noise, user-desired composition condition, and composition of real material, respectively. The variables x̃ and x denote the feature (representation)
of generated and real materials, respectively. Ĉgen and Ĉreal denote the predicted composition of the generated and real features, respectively. D(x) is
the critic function also known as the critic network.
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with target composition. The critic computes the Wasserstein
distance which represents dissimilarity between the true and
trained data distributions, and by reducing this distance the
generator would generate more realistic materials. The critic
network is composed of three-shared multilayers perceptions
(MLPs) followed by average pooling layers to ensure the
permutation invariance under the reordering of points in the
2D-representation.50 We note that the permutation invariance
under the reordering of input is satisfied by using shared
weight parameters and average pooling since the averaged
value is unchanged under the change of orders. The classifier
network, which outputs the composition vector from the input
2D-representation, is used to ensure that the generated new
materials meet the given composition condition. The loss of
the classifier is back-propagated to the generator only if the
generated 2D-representation (x̃) is taken as input. More details
on the architecture of each neural network, hyperparameters
for the model, and loss function are described in Section S2 of
the SI.

■ RESULTS AND DISCUSSION
Comparison with iMatGen. Before applying the current

model to the Mg−Mn−O system, we first compared the results
on the V−O system that was employed in the iMatGen37 work,
which represents the first generative model for inorganic
crystal structures, and therefore, it is a useful baseline to
explore. After using a data-augmented version of the V−O
training data, we generated samples of V3O4, V4O5, V5O6,
V5O8, and V6O7 structures to compare the chemical space
generated from the iMatGen based on VAE. About 40% of the
metastable polymorphs of V−O (Ehull ≤ 200 meV/atom)
discovered by iMatGen were rediscovered by the current GAN
model, indicating some similarity in the latent space trained by
each generative model. The remaining 60% difference in the
two (VAE and GAN) generative models can thus be
interpreted as a difference in the latent space structure or
sampling method in each generative model. Particularly, in the
V3O4 and V6O7 composition, the present model generated
more stable polymorphs than the most stable ones generated
via iMatGen. Thus, the performance of the current coordinate-
based GAN model seems comparable to that of iMatGen.
Given that the current model can sample the compounds with
user-desired composition with various invariances also
addressed for a larger crystal unit cell, it can be particularly
useful for discovering materials with specific compositions. The
other training details and the results for the V−O system are
summarized in Section S6 in the SI.
Generative High-Throughput Screening of Ternary

Mg−Mn−O Photoanode Materials. We generated ternary
Mg−Mn−O materials and evaluated their photoanode proper-
ties to find structures with an improved performance. A
previous study4 demonstrated that Mn oxides combined with
Mg resulted in reasonable catalytic activity but with relatively
weak aqueous stability in experimental conditions (pH and
voltage). Thus, to further enhance the aqueous stability, a
computational HTVS study based on an elemental substitution
of the MP database (total 7356 candidates) was previously
performed which resulted in a new discovery of Mg2MnO4
with reasonable stability and activity (also experimentally
verified).56 In this work, we apply the proposed generative
model to perform generative-HTVS to find new Mg−Mn−O
structures beyond the existing structural motifs in the database.
To achieve this, first we set total 133 candidate compositions

(see Figure 4b) that meet the condition of the Mn oxidation
state (2 ≤ OSMn ≤ 4), which are expanded from the chemical
space consisting of existing materials (see Figure 4a). Among
133 compositions, we selected a total of 31 compositions (11
compositions included in MP, and 20 compositions not
included in MP) by considering the number of atoms in the
unit cell due to the computational cost of DFT. Then, we
sampled a total of 9300 Mg−Mn−O structures using the
proposed crystal GAN: 3300 structures (300 structures in 11
compositions included in MP, see Figure 4c) and 6000
structures (300 structures in 20 new compositions not in MP,
see Figure 4d). The process of sampling materials is described
in Figure 3. These generated crystal structures are then fed to
the DFT calculations for property evaluation.

The energy above hull (formation stability) of the generated
materials is first summarized in Figure 4c. Among the 3300
newly generated materials for the existing compositions in MP
(Figure 4c), 368 Mg−Mn−O materials are predicted as
theoretically metastable (i.e., Ehull ≤ 200 meV/atom, red
crosses in Figure 4c) where 35 structures are considered as
potentially synthesizable62 (i.e., Ehull ≤ 80 meV/atom). Among
those 368 newly generated materials with Ehull ≤ 200 meV/
atom, 60 of them are the same as those discovered by the
previous HTVS on the 7500 substituted data set.56 In
particular, for the MgMn4O8 composition, the current
model-generated structure is very close to the convex hull
(i.e., Ehull = 5 meV/atom), much more stable than all the
related polymorphs found in MP. This shows that the present
crystal generative model can discover new stable compounds
missed out by conventional substitution-based methods.
The formation stability for the compositions that are not in

the MP database is next summarized in Figure 4d. Among the
6000 generated structures, 753 Mg−Mn−O materials are
predicted as theoretically metastable (i.e., Ehull ≤ 200 meV/
atom, red crosses in Figure 4d) where 113 structures are
considered as potentially synthesizable (i.e., Ehull ≤ 80 meV/
atom). In particular, for Mg2MnO4, a composition not in MP,
we discovered a structure corresponding to the convex hull
minimum indicating that our model can discover an entirely
new ground state material within the DFT accuracy.
Since Mg−Mn−O compounds are considered here as

photoanode materials, their Pourbaix stability (ΔGpbx) and
the band gaps (Eg

HSE) are further considered as the next
screening criteria for those newly generated structures that

Figure 3. Schematic of the generation process for crystals with the
desired composition. The composition of generated material is
determined by the output of the classifier network.
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satisfy Ehull ≤ 80 meV/atom (35 materials in Figure 4c and 113
materials in Figure 4d). The Pourbaix hull represents the
stability of a material in an aqueous electrochemical environ-
ment at a given pH and electrochemical condition63 (i.e.,
difference of the free energy from the ground state). We
evaluated such aqueous electrochemical stability described by
the minimum of Pourbaix hull Gibbs free energy at 1.5 V vs
RHE over the 0−14 pH range, ΔGpbx

min, which was calculated as
implemented in the Pymatgen64 module (also refer to Noh et
al.56 for computational details). Therefore, a material with low
ΔGpbx

min represents a (meta-)stable phase in an aqueous

electrochemical environment, and for those materials meeting
ΔGpbx

min(Eform) ≤ 0.8 eV/atom, the HSE calculations are further
performed to calculate the band gap.
Following Shinde et al.,4 we finally identified 28 Mg−Mn−O

materials (Figure 5) with ΔGpbx
min(Eform) ≤ 0.59 eV/atom and

1.6 eV≤ Eg
HSE ≤ 3.0 eV as a potential photoanode material. Out

of these 28 Mg−Mn−O materials, 14 materials correspond to
new compositions not included in database, meaning that
those are entirely new structures. The remaining 14 materials
are composed of 8 existing compositions in the database,
among which 5 of them correspond to the previous findings by

Figure 4. Phase diagram and DFT calculated thermodynamic stability (i.e., the energy above the convex hull) for the generated Mg−Mn−O
materials. Ternary phase diagram of the Mg−Mn−O system constructed using the convex hull stable phases taken from the materials project
database (green circle), including (a) metastable Mg−Mn−O compositions (red circle) taken from materials project or (b) possible compositions
that can be explored by our proposed generative model. The stability of the crystal structure in the form of the energy above the convex hulls is
computed using DFT for (c) 11 compositions included in the MP database, and (d) 20 new compositions not in the MP database. Red crosses are
the generated materials with composition-conditioned, and blue stars in part c correspond to the materials in the MP database. (There are no
metastable (Ehull ≤ 200 meV/atom) structures having Mg2Mn2O5 composition in MP database.) The horizontal dotted red lines represent 80 and 0
meV/atom, respectively.
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Noh et al.56 based on substitutional HTVS; we have used the
Structure Matcher function in the Pymatgen python package to
estimate the structural similarity, and more detailed discussion
is described in Section S5.2 in the SI. Experimentally, in
MgMn2O4,

4 Mg6MnO8,
65 and Mg2MnO4

56 compositions,
promising photoanode materials were synthesized. We found
several promising photoanode materials in many other
compositions which could not be considered in conventional
HTVS (see Figure S9). Some of the 23 newly found
photoanode candidates (14 materials in new compositions,
and 9 materials in existing compositions) are depicted in
Section S5.3 in the SI.

■ DISCUSSION
The proposed generative framework can be compared with
crystal structure prediction methods using evolutionary
algorithms29,30 and quasirandom searching (i.e., AIRSS27,28).
As briefly described in the Introduction, evolutionary
algorithms search an optimal state (material) by repeating
the series of specific evolutionary processes rather than
learning the distribution of the whole target chemical space
as in GAN. The quality of the results (e.g., how close the final
structure is to the global minimum and how diverse the local
minimum structures are) and computational cost to obtain the
optimal state might be sensitive to this initialization in the case
of exploring entirely new chemical space as evolutionary
algorithms start from a randomly initialized population. In the
case of the quasirandom searching approach,27,28 it randomly
samples the structures to maximize the exploration but usually
steered by human-intuitive constraints, such as symmetry and
coordination numbers, toward more realistic structures. In
general, the large computational cost to find new materials
would be a main challenge of most global optimization-based
strategies, so there have been additional efforts to reduce the
computational cost of evaluating property by assisting or
replacing the ab initio approach via the property predictive
machine learning models.66

Compared to the aforementioned global optimization
strategies which explore new local minima by utilizing the
previous trajectories on the configurational space (i.e., on-the-
fly approach), the generative framework generates new data
(material) from the continuous latent space that encodes the
information on the entire chemical space used in the training
stage. This means that the efficiency and accuracy of structure
prediction are largely dependent on the structural diversity of
the training data set. Of course, the computational cost to
prepare the training data set and optimize the generated
structures is also a burden for the present generative model-
based prediction as in most other global optimization
techniques. Thus, the methods based on global optimization
and the generative-HTVS seem comparable and complemen-
tary in the sense that the former is efficiently searching for a
global minimum by learning the geometric information on the
potential energy surface (or functional manifold) with specific
structure generation rules, while the latter is learning the whole
distribution of crystal structures in the training data set and
then sample the new data from this machine-learned
distribution.
There are several limitations and promising directions for

the proposed composition-based generative framework to be
used as a general-purpose inverse design. The current model
generates new crystal structures with only the target
composition conditioned, and thus, subsequent HTVS of
properties are required to make a final functional discovery. To
be a truly inverse design in which the machine generates the
functional material directly without HTVS, one thus should
add to the composition other materials properties (e.g., band
gap energy, dielectric constant, and etc.) as input conditions to
guide the materials discovery. Another way of achieving the
inverse design goals would be to combine the generative
process with reinforcement learning.40 In addition, while the
current model can produce ternary crystal compounds,
extending it to quaternary and higher-order compounds
would be straightforward by adding more rows or channels

Figure 5. Pourbaix stabilities and HSE band gap energies of stable structures generated by the proposed crystal GAN model (red circles). The
dashed blue box is the target region for the promising photoanode material. Stars represent the promising photoanode materials discovered by
other previous works (i.e., conventional HTVS),4,56,65 and purple stars are materials synthesized experimentally.
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in the input format, or by separately adding a segmentation
network to classify elemental information (although preparing
the training data for higher-order compounds would be more
challenging due to a combinatorial complexity when including
more than 4 elements). Other important aspects in need of
further developments are the quantitative metrics related to the
novelty of generated samples compared to the existing data, as
well as the uncertainty (or validity) of the generated data. The
synthesizability prediction of the newly generated materials
would also be an essential ingredient for the practical inverse
design of crystals for experimental verification.

■ CONCLUSIONS
We proposed to employ the generative adversarial network
(GAN) for crystal structure generation using a coordinate-
based (and therefore inversion-free) crystal representation
inspired by point clouds. By conditioning the network with the
crystal composition, our model can generate materials with a
desired chemical composition. As an application, we applied it
to generate new Mg−Mn−O ternary compounds to find
potential photoanode materials and discovered 23 new crystal
compounds with reasonable stability in an aqueous environ-
ment and band gap. Two of the structures (in MgMn4O8 and
Mg2MnO4) corresponded to the convex hull minimum, a
stable new phase, or very close to it within the DFT accuracy.
We expect that the proposed model can be extended to a
general-purpose inverse design by incorporating materials
properties into the model in future work.
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